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Abstract: In this paper, we study the iterative algorithms for saddle point problems(SPP). Bai, Golub and Pan
recently studied a class of preconditioned Hermitian and skew-Hermitian splitting methods(PHSS). By further
accelerating it with another parameters, using the Hermitian/skew-Hermitian splitting iteration technique we
present the generalized preconditioned Hermitian and skew-Hermitian splitting methods with four parameters(4-
GPHSS). Under some suitable conditions, we give the convergence results. Numerical examples further confirm
the correctness of the theory and the effectiveness of the method.
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1 Introduction
We consider the iterative solutions of large sparse

saddle point problems of the form(
A B
BT 0

)(
x
y

)
=

(
p
q

)
(1)

where A ∈ Rm×m is a symmetric positive defi-
nite matrix, B ∈ Rm×n is a matrix of full col-
umn rank, p ∈ Rm and q ∈ Rn are two given vec-
tors. here m ≥ n. Denote by BT the transpose of the
matrix B. These assumptions guarantee the existence
and uniqueness of the solution of the linear system.

This system arises as the first-order optimal-
ity conditions for the following equality-constrained
quadratic programming problem:

min J(x) =
1

2
xTAx− pTx (2)

s.t. Bx = q (3)

In this case the variable y represents the vector of
Lagrange multipliers. Any solution (x∗, y∗) of (1) is
a saddle point for the Lagrangian

L(x, y) =
1

2
xTAx− pTx+ (Bx− q)T y (4)

hence the name ’saddle point problem’ given to (1) .
Recall that a saddle point is a point (x∗, y∗) ∈

Rn+m that satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) (5)

for any x ∈ Rn and y ∈ Rm, or, equivalently,

min
x

max
y
L(x, y) = L(x∗, y∗) = max

y
min
x
L(x, y) (6)

Systems of the form (1) also arise in nonlin-
early constrained optimization (sequential quadratic
programming and interior point methods), in fluid dy-
namics (’Stokes’ problem), incompressible elasticity,
circuit analysis, structural analysis, and so forth[1].

Since the above problem is large and sparse, it-
erative methods for solving equation (1) are effective
because of storage requirements and preservation of
sparsity. The best known and the oldest methods is
Uzawa algorithms[2]. The well-known SOR method,
which is a simple iterative method that is popular in
engineering applications, cannot be applied directly to
system (1) because of the singularity of the block di-
agonal part of the coefficient matrix. Recently, several
proposals for generalizing the SOR method to sys-
tem (1) have been proposed[3, 4, 5, 6, 7].

Recently, Benzi and Golub discussed the conver-
gence and the preconditioning property of the Her-
mitian and skew-Hermitian splitting(HSS) iteration
method when it is used to solve the saddle point
problem[8].Then, Bai et al.establish a class of precon-
ditioned Hermitian/skew-Hermitian splitting(PHSS)
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iteration method for saddle point problem[9], and
Pan et al.futher proposed its two-parameter ac-
celeration, called the generalized preconditioned
Hermitian/skew-Hermitian splitting(GPHSS) itera-
tion method, and studied the convergence of this iter-
ative scheme[10]. Both theory and experiments have
shown that these methods are very robust and effi-
cient for solving the saddle-point problem when they
are used as either solvers or preconditioners(for the
Krylov subspace iteration methods).

In this paper, By further accelerating PHSS it-
eration method with another parameter, we present
the generalized Preconditioned Hermitian and skew-
Hermitian splitting methods with four parameters(4-
GPHSS). Under some suitable conditions, we give the
convergence results. Numerical results show that the
new methods are very effective.

2 The Four-parameter PHSS itera-
tion methods

In this section, we review the HSS and PHSS
iteration method for solving the saddle-point prob-
lems presented by Bai,Golub and Ng,Bai,Golub and
Pan[8, 9].

Let A ∈ Cn×n be a positive definite ma-
trix. Given an initial guess x(0) ∈ Cn. For k =
0, 1, 2, · · · until {x(k)} converges, compute{

(αI +H)x(k+
1
2
) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI −H)x(k+
1
2
) + b

(7)

where α is a given positive constant.
In matrix-vector form, the above HSS iteration

method can be equivalently rewritten as

x(k+1) =M(α)x(k) +N(α)b, k = 0, 1, 2, · · · (8)

where

M(α) = (αI + S)−1(αI −H)(αI +H)−1(αI − S)

and

N(α) = 2α(αI + S)−1(αI +H)−1

Here, M(α) is the iteration matrix of the HSS itera-
tion. In fact, (8)may also result from the splitting

A = F (α)−G(α)

of the coefficient matrix A, with
F (α) =

1

2α
(αI +H)(αI + S)

G(α) =
1

2α
(αI −H)(αI − S)

(9)

The following theorem describes the convergence
property of the HSS iteration.

Theorem 1. [8]Let A ∈ Cn×n be a positive def-
inite matrix, H = 1

2(A + A∗) and S = 1
2(A −

A∗) be its Hermitian and skew-Hermitian parts, re-
spectively, and α be a positive constant. Then
the spectral radius ρ(M(α)) of the iteration ma-
trix M(α) of the HSS iteration is bounded by

σ(α) = max
λj∈λ(H)

|α− λj |
|α+ λj |

where λ(H) is the spectral set of the matrixH . There-
fore, it follows that

ρ(M(α)) ≤ σ(α) < 1,∀α > 0,

i.e., the HSS iteration converges to the exact solu-
tion x∗ ∈ Cn of the system of linear equations (1).
Moreover, if γmin and γmax are the lower and the up-
per bounds of the eigenvalues of the matrix H, respec-
tively, then

α∗ = argmin
α

{
max

γmin≤λ≤γmax

∣∣∣∣α− λ

α+ λ

∣∣∣∣}
=

√
γminγmax

and

σ(α∗) =

√
γmax −

√
γmin√

γmax +
√
γmin

=

√
κ(H)− 1√
κ(H) + 1

,

where κ(H) is the spectral condition number of H.

To establish the convergence properties of itera-
tive method for the saddle-point problem, It need to
begin by writing the saddle-point problem (1) in non-
symmetric form:

AZ = b (10)

where

A =

(
A B

−BT 0

)
, Z =

(
x
y

)
, b =

(
p
−q

)
(11)

define matrices

P =

(
A 0
0 Q

)
(12)

and

B = A− 1
2BQ− 1

2 ∈ Rn×n (13)
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where Q ∈ Rn×n is a prescribed nonsingular and
symmetric matrix, and define

A = P− 1
2AP− 1

2 =

(
I B

−BT
0

)
(14)

(
x
y

)
= P

1
2

(
x
y

)
(15)

b = P− 1
2 b =

(
p
−q

)
(16)

Then the system of linear equations (1) can be trans-
formed into the following equivalent one:

A
(
x
y

)
= b (17)

Evidently, the Hermitian and skew-Hermitian parts of
the matrix A ∈ R(m+n)×(m+n) are, respectively,

H =
1

2
(A+AT

) =

(
I 0
0 0

)
(18)

and

S =
1

2
(A−AT

) =

(
0 B

−BT
0

)
(19)

By straightforwardly applying the HSS iteration tech-
nique to (17), it then is easy to obtain the HSS iteration
scheme [8] :
(αI +H)

(
x(k+

1
2
)

y(k+
1
2
)

)
= (αI − S)

(
x(k)

y(k)

)
+ b

(αI + S)

(
x(k+1)

y(k+1)

)
= (αI −H)

(
x(k+

1
2
)

y(k+
1
2
)

)
+ b

(20)

where α is a given positive constant, The iteration ma-
trix of the HSS iteration method is

M (α) = (αI + S)−1(αI −H)(αI +H)−1(αI − S)

It then follows immediately that in the original vari-
able it is easy to obtain the following preconditioned
Hermitian/skew-Hermitian splitting (PHSS) iteration
method [9].
(αP +H)

(
x(k+

1
2
)

y(k+
1
2
)

)
= (αP − S)

(
x(k)

y(k)

)
+ b

(αP + S)

(
x(k+1)

y(k+1)

)
= (αP −H)

(
x(k+

1
2
)

y(k+
1
2
)

)
+ b

(21)

where

H =
1

2
(A+AT ), S =

1

2
(A−AT )

The iteration matrix of the PHSS iteration method is

M(α)

=(αP + S)−1(αP −H)(αP +H)−1(αP − S)
(22)

Let ω, τ , α and β be four nonzero reals, Im ∈ Rm×m

and In ∈ Rn×n be the m-by-m and the n-by-n identity
matrices, respectively, and

Ω =

(
ωIm 0
0 τIn

)

Λ =

(
αIm 0
0 βIn

)
Then we consider the following four-parameter PHSS
iteration scheme:
(ΩP +H)

(
x(k+

1
2
)

y(k+
1
2
)

)
= (ΩP − S)

(
x(k)

y(k)

)
+ b

(ΛP + S)

(
x(k+1)

y(k+1)

)
= (ΛP −H)

(
x(k+

1
2
)

y(k+
1
2
)

)
+ b

(23)

More precisely, we have the following algorithmic
description of this Four-parameter Preconditioned
Hermitian and skew-Hermitian Splitting method(4-
GPHSS).

Algorithm 2. (The 4-GPHSS iteration method)
Let Q ∈ Rn×n be a nonsingular and symmet-

ric matrix. Given initial vectors x(0) ∈ Rm, y(0) ∈
Rn, and four relaxation factors ω, τ, α, β ̸=
0. For k = 0, 1, 2, . . .until the iteration se-
quence {(x(k)T , y(k)T )T } is convergent, compute

x(k+
1
2
) = ω

1+ωx
(k) + 1

ω+1A
−1(p−By(k))

y(k+
1
2
) = y(k) + 1

τQ
−1(BTx(k) − q)

y(k+1) = D−1(βQy(k+
1
2
)

+(1− 1
α)B

Tx(k+
1
2
) + 1

αB
TA−1p− q)

x(k+1) = α−1
α x(k+

1
2
) + 1

αA
−1(p−By(k+1))

(24)

here D = α−1BTA−1B + βQ ∈ Rn×n .
Obviously, when ω = α, τ = β, Algorithm 2 re-

duces to GPHSS method in[10]; when ω = α = τ =
β, it becomes the PHSS method[9].
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By selecting different matrix Q, we can get some
useful 4-GPHSS iterative algorithm. Such as Q =
θI, (θ ̸= 0), Q = BTA−1B,Q = BTB, in addi-
tion to the above special selection method, as long as
you keep Q symmetric positive definite, can also have
other method.

After straightforward computations we obtain the
iterration matrix of the 4-GPHSS iteration method

M(ω,τ,α,β)

= (ΛP + S)−1(ΛP −H)(ΩP +H)−1(ΩP − S)

= P− 1
2M (ω,τ,α,β)P

− 1
2

where

M (ω,τ,α,β)

= (ΛI + S)−1(ΛI −H)(ΩI +H)−1(ΩI − S)

Therefore, we have ρ(M(ω,τ,α,β)) = ρ(M (ω,τ,α,β)).
Evidently, the 4-GPHSS iteration method can be

equivalently rewritten as(
x(k+1)

y(k+1)

)
= L(ω,τ,α,β)

(
x(k)

y(k)

)
+N(ω,τ,α,β)

(
p
−q

)
(25)

where

L(ω,τ,α,β) =

(
αA B
−BT βQ

)−1
(
ω(α−1)
ω+1 A −α−1

ω+1B
β
τB

T βQ

)
(26)

and

N(ω,τ,α,β) =

(
αA B
−BT βQ

)−1(α+ω
ω+1 Im 0

0 β+τ
τ In

)
(27)

Here, L(ω,τ,α,β) is the iteration matrix of the 4-GPHSS
iteration. In fact, (25) may also result from the split-
ting

A =M(ω,τ,α,β) −N(ω,τ,α,β) (28)

of the coefficient matrix A, with

M(ω,τ,α,β) =

(
α(ω+1)
ω+α A ω+1

α+ωB

− τ
β+τB

T βτ
β+τQ

)
(29)

N(ω,τ,α,β) =

(
ω(α−1)
ω+α A − α−1

α+ωB
β

β+τB
T βτ

β+τQ

)
(30)

3 Convergence analysis
By straightforward computations, we can ob-

tain an explicit expression of the iteration matrix
L(ω,τ,α,β) in (25).

Lemma 3. Consider the system of linear equa-
tions (10). Let A ∈ Rm×m be symmetric positive
definite matrix, B ∈ Rm×n be of full column rank,
and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite ma-
trix. Then we partition L(ω,τ,α,β) in (25) as

L(ω,τ,α,β) =

(
L11 L12

L21 L22

)
(31)

where

L11 =
(α− 1)ω

α(ω + 1)
I − T(α,β,ω,τ)A

−1BS−1
(α,β)B

T

L12 = −β(α+ ω)

α(ω + 1)
A−1BS−1

(α,β)Q

L21 = (
ω(α− 1)

α(ω + 1)
+
β

τ
)QS−1

(α,β)B
TA−1

L22 = −α− 1

ω + 1
I +

β(ω + α)

ω + 1
S−1
(α,β)Q

and

T(α,β,ω,τ) =
(α− 1)ω

α2(ω + 1)
+

β

ατ
(32)

S−1
(α,β) = βQ+

1

α
BTA−1B (33)

Proof. Let

M (ω,τ,α,β) = P− 1
2M(ω,τ,α,β)P

− 1
2 (34)

=

(
α(ω+1)
ω+α I ω+1

α+ωB

− τ
β+τB

T βτ
β+τ I

)
(35)

N (ω,τ,α,β) = P− 1
2N(ω,τ,α,β)P

− 1
2 (36)

=

(
ω(α−1)
ω+α I − α−1

α+ωB
β

β+τB
T βτ

β+τ I

)
(37)

where the matrices P and B are define
in (12)(13). Then

L(ω,τ,α,β) =

(
L11 L12

L21 L22

)
=M

−1
(ω,τ,α,β)N (ω,τ,α,β) (38)
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with

L11 =
(α− 1)ω

α(ω + 1)
I − (

(α− 1)ω

α2(ω + 1)
+

β

ατ
)B S

−1
(α,β)B

T

L12 = −β(α+ ω)

α(ω + 1)
B S

−1
(α,β)

L21 = (
ω(α− 1)

α(ω + 1)
+
β

τ
)S

−1
(α,β)B

T

L22 = −α− 1

ω + 1
I +

β(ω + α)

ω + 1
S
−1
(α,β)

where

S
−1
(α,β) = βI +

1

α
B
T
B (39)

Then from (28) we have

L(ω,τ,α,β) = M−1
(ω,τ,α,β)N(ω,τ,α,β) (40)

= P− 1
2M

−1
(ω,τ,α,β)N (ω,τ,α,β)P

1
2 (41)

= P− 1
2L(ω,τ,α,β)P

1
2 (42)

the result follows immediately.

Based on Lemma (3), we can further obtain the
eigenvalues of the iteration matrix L(ω,τ,α,β) of the 4-
GPHSS method.

Lemma 4. Let the conditions in Lemma 3 be sat-
isfied. If σk(k = 1, 2, . . . n) are the positive singu-
lar values of the matrix B = A− 1

2BQ− 1
2 , then the

eigenvalues of the iteration matrix L(ω,τ,α,β) of the 4-

GPHSS iteration method are ω(α−1)
α(ω+1) with multiplic-

ity m− n , and

dk ±
√
d2k − 4ek

2τ(ω + 1)(αβ + σ2k)
, k = 1, 2, . . . n. (43)

where

dk = ωτβ(α+1)+αβτ(ω−1)−[β(ω+1)+τ(α−1)]σ2k

and

ek = βτ(ω + 1)(α− 1)(ωτ + σ2k)(αβ + σ2k)

Proof. From (42) we know that L(ω,τ,α,β) is similar
to L(ω,τ,α,β) of (38). Therefore, we only need to com-
pute the eigenvalues of the matrix L(ω,τ,α,β) .

Let B = U Σ1V
T be the singular value decom-

position of the matrix B, where U ∈ Rm×m and V ∈
Rn×n are unitary matrices, and

Σ1 =

(
Σ
0

)
,Σ = diag(σ1, σ2, . . . , σn) ∈ Rn×n. (44)

Then after a few computation, we have

S(α,β) = V (βI +
1

α
Σ
2
)V

T
= V DV

T

and therefore

L11 = U

(
(α−1)ω
α(ω+1)I − tD−1Σ

2
0

0 ω(α−1)
α(ω+1)I

)
U
T

L12 = U

(
−β(α+ω)
α(ω+1)ΣD

−1

0

)
V
T

L21 = V ((
ω(α− 1)

α(ω + 1)
+
β

τ
)ΣD−1, 0)U

T

L22 = V (−α− 1

ω + 1
I +

β(ω + α)

ω + 1
D−1)V

T

Define Q = diag(U, V ), then

Q
TL(ω,τ,α,β)Q =rI − tD−1Σ

2
0 −β(α+ω)

α(ω+1)ΣD
−1

0 ω(α−1)
α(ω+1)I 0

(r + β
τ )ΣD

−1 0 −α−1
ω+1I +

β(ω+α)
ω+1 D−1


where t = (α−1)ω

α2(ω+1)
+ β

ατ , r =
(α−1)ω
α(ω+1) .

It follows immediately that the eigenvalues of the
matrix L(ω,τ,α,β) are just ω(α−1)

α(ω+1) with multiplicitym−
n, and those of the matrix(

rI − tD−1Σ
2 −β(α+ω)

α(ω+1)ΣD
−1

(r + β
τ )ΣD

−1 −α−1
ω+1I +

β(ω+α)
ω+1 D−1

)

which are the same as the matrices
1

(ω+1)(αβ+σ2
k)
Lk, k = 1, 2, . . . , n. where

Lk =(
ωβ(α− 1)− β(ω+1)

τ σ2k −β(ω + α)σk

(ω(α− 1) + αβ(ω+1)
τ )σk αβ(ω + 1)− (α− 1)σ2k

)

The two eigenvalues of the matrix Lk are two
roots of the quadratic equations

λ2 − [2αβω + (ω − α)β − β(ω + 1) + τ(α− 1)

τ
σ2k]λ

+
β

τ
(ω + 1)(α− 1)(ωτ + σ2k)(αβ + σ2k) = 0

or in other words,

λ =
1

2τ

(
dk ±

√
d2k − 4ek

)
(45)
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We know that the eigenvalues of the ma-
trix L(ω,τ,α,β) are ω(α−1)

α(ω+1) with multiplicitym−n, and

dk ±
√
d2k − 4ek

2τ(ω + 1)(αβ + σ2k)
, k = 1, 2, . . . n. (46)

This completes our proof.

Lemma 5. [11] Consider the quadratic equation x2−
bx + c = 0 , when b and c are real numbers, Both
roots of the equation are less than one in modulus if
and only if |c| < 1 and |b| < 1 + c .

Theorem 6. Consider the system of linear equa-
tions (10). Let A ∈ Rm×m be symmetric posi-
tive definite matrix, B ∈ Rm×n be of full column
rank, and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite ma-
trix, If ωτ = αβ , Then

ρ(L(ω,τ,α,β)) < 1,∀ω > 0, τ > 0, α > 0, β > 0. (47)

i.e. the 4-GPHSS iteration converges to the exact so-
lution of the system of linear equations (10) .

Proof. According to lemma 4, we know that the
eigenvalues of the iteration matrix L(ω,τ,α,β) are
ω(α−1)
α(ω+1) with multiplicity m − n, and roots of the
quadratic equations

λ2 + bλ+ c = 0

where

b =
[β(ω + 1) + τ(α− 1)]σ2k − 2αβωτ − (α− ω)βτ

τ(ω + 1)(αβ + σ2k)

and

c =
β

τ

α− 1

ω + 1

ωτ + σ2k
αβ + σ2k

obviously, we have

|ω(α− 1)

α(ω + 1
| = |α− 1

α
|| ω

ω + 1
| < 1,

and if ωτ = αβ, then after a few computation, we
have

|β
τ

α− 1

ω + 1

ωτ + σ2k
αβ + σ2k

| = |ω(α− 1)

α(ω + 1
|

= |α− 1

α
|| ω

ω + 1
| < 1

and

|
[β(ω + 1) + τ(α− 1)]σ2k − 2αβωτ − (α− ω)βτ

τ(ω + 1)(αβ + σ2k)
|

=|
2αβωτ + (α− ω)βτ + (τ − β − ωβ − ατ)σ2k

τ(ω + 1)(αβ + σ2k)
|

<|
2αβωτ + (α− ω)βτ + (τ − β + ωτ + αβ)σ2k

τ(ω + 1)(αβ + σ2k)
|

=1 +
β

τ

α− 1

ω + 1

ωτ + σ2k
αβ + σ2k

=1 + c

By lemma 5, we have |λ| < 1, in other words, when
ωτ = αβ , ρ(L(ω,τ,α,β)) < 1, ∀ω, τ, α, β > 0.

Theorem 7. [10]Consider the system of linear equa-
tions (10). Let A ∈ Rm×m be symmetric positive def-
inite matrix, B ∈ Rm×n be of full column rank,
and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite ma-
trix, If ω = α, τ = β, Then

ρ(L(ω,τ)) < 1, ∀ω > 0, τ > 0. (48)

i.e. the GPHSS iteration converges to the exact solu-
tion of the system of linear equations (10) .

Proof. From (40) we know that L(ω,τ,α,β) is similar
to L(ω,τ,α,β) of (38). Therefore, we only need to com-
pute the eigenvalues of the matrix L(ω,τ,α,β).

Based on lemma 4, when ω = α, τ = β, we
can obtain that the eigenvalues of the iteration ma-
trix L(ω,τ) are ω−1

ω+1 with multiplicity m− n, and

λ
(k)
1,2 =

ω(ωτ − σ2k)±
√

(τω + σ2k)
2 − 4ω3τσ2k

(ω + 1)(τω + σ2k)
(49)

k = 1, 2, . . . , n.
We know that when τω + σ2k > 2ω

√
τωσk ,

|λ(k)1,2| =
ω|ωτ − σ2k|+

√
(τω + σ2k)

2 − 4ω3τσ2k

(ω + 1)(τω + σ2k)

=
ω

ω + 1

(
|τω + σ2k|
τω + σ2k

+

√
1

ω2
−

4ω3τσ2k
(τω + σ2k)

2

)
<

ω

ω + 1
(1 +

1

ω
) = 1

when τω + σ2k ≤ 2ω
√
τωσk ,

|λ(k)1,2| =
√
λ
(k)
1 λ

(k)
2 =

√
ω − 1

ω + 1
< 1
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Obviously, we have

|ω − 1|
ω + 1

< 1

then
ρ(M(ω,τ)) < 1,∀ω > 0, τ > 0,

i.e. the GPHSS iteration converges to the exact solu-
tion of the system of linear equations (10).

Corollary 8. [9] Consider the system of linear equa-
tions (10). Let A ∈ Rm×m be symmetric positive
definite matrix, B ∈ Rm×n be of full column rank,
and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite ma-
trix, If ω = α = τ = β, Then

ρ(L(α)) < 1,∀α > 0. (50)

i.e. the PHSS iteration converges to the exact solution
of the system of linear equations (10).

The optimal iteration parameter and the cor-
responding asymptotic convergence factor of the
GPHSS iteration method are described in the follow-
ing theorem.

Theorem 9. Consider the system of linear equations
(10). Let A ∈ Rm×m be symmetric positive def-
inite matrix, B ∈ Rm×n be of full column rank,
and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite
matrix, If ω = α, τ = β, σk(k = 1, 2, . . . n) are
the positive singular values of the matrix B =

A− 1
2BQ− 1

2 , and σmin = min
1≤k≤n{σk}, σmax =

max
1≤k≤n{σk}. Then for the GPHSS iteration converges
to the exact solution of the system of linear equa-
tions (10), the optimal value of the iteration param-
eter ω, τ is given by

ω∗ = argmin
(ω,τ)

ρ(M(ω,τ))

=
σmax + σmin
2
√
σmaxσmin

τ∗ = argmin
(ω,τ)

ρ(M(ω,τ))

=
2σmaxσmin

√
σmaxσmin

σmax + σmin

and correspondingly

ρ(M(ω∗,τ∗)) =

√
σmax −

√
σmin√

σmax +
√
σmin

Proof. According to lemma 4, we know

|λ| =



|ω−1|
ω+1 , or

ω
ω+1

(
|ωτ−σ2

k|
ωτ+σ2

k
+

√
1
ω2 − 4ωτσ2

k

(ωτ+σ2
k)

2

)
,

for ωτ + σ2k > 2ω
√
ωτσk , or√

ω−1
ω+1 , for ωτ + σ2k ≤ 2ω

√
ωτσk,

(51)
for k = 1, 2, · · ·n.

We observe that the following two facts hold
true:

1. when ω ≤ 1 , ωτ + σ2k > 2ω
√
ωτσk, k =

1, 2, · · ·n;

2. when ω > 1 ,

a. ωτ + σ2k > 2ω
√
ωτσk, if and only if 0 <

σk < α− or σk > α+ , k ∈ {1, 2, · · ·n};

b. ωτ+σ2k ≤ 2ω
√
ωτσk, if and only if α− ≤

σk ≤ α+ , k ∈ {1, 2, · · ·n};

c. ω−1
ω+1 <

√
ω−1
ω+1

where
α− = ω

√
ωτ −

√
ωτ(ω2 − 1)

α+ = ω
√
ωτ +

√
ωτ(ω2 − 1)

Let

Θ(ω, τ, σ)

=
ω

ω + 1

(
|ωτ − σ2|
ωτ + σ2

+

√
1

ω2
− 4ωτσ2

(ωτ + σ2)2

)
Then base on the facts (1) and (2) we easily see that

ρ(M(ω,τ)) =



max{1−ω
1+ω , max

1≤k≤n
Θ(ω, τ, σk)},

for ω ≤ 1,

max{
√

ω−1
ω+1 , max

σk<α−
orσk>α+

Θ(ω, τ, σk)},

for ω > 1.

(52)
For any fixed β > 0, we define two functions θ1, θ2 :
(0,+∞) → (0,+∞) by

θ1(t) =
β − t

β + t
, θ2(t) = − 4βt

(β + t)2
.

After straightforward computations we obtain

θ′1(t) = − 2β

(β + t)2
, θ′2(t) =

4β(t− β)

(β + t)3
.

It then follows that:
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i. max
1≤k≤n

Θ(ω, τ, σk)

= max{Θ(ω, τ, σmin),Θ(ω, τ, σmax)},
for ω ≤ 1, and σ2min ≤ ωτ ≤ σ2max

ii. max
σk<α− or σk>α+

Θ(ω, τ, σk)

= max{Θ(ω, τ, σmin),Θ(ω, τ, σmax)},
for ω > 1, and σmin < α− or σmax > α+

Therefore, when ω ≤ 1, the optimal parame-
ter ω∗, τ∗ must satisfy σ2min ≤ ω∗τ∗ ≤ σ2max, and
either of the following three conditions:

1. 1−ω∗

1+ω∗ = Θ(ω∗, τ∗, σmin) ≥ Θ(ω∗, τ∗, σmax)

2. 1−ω∗

1+ω∗ = Θ(ω∗, τ∗, σmax) ≥ Θ(ω∗, τ∗, σmin)

3. Θ(ω∗, τ∗, σmin) = Θ(ω∗, τ∗, σmax) ≥ 1−ω∗

1+ω∗

and when ω > 1, the optimal parameter ω∗, τ∗ must
satisfy σmin < α∗

− or σmax > α∗
+, and either of the

following three conditions:

a.√
ω∗ − 1

ω∗ + 1
= Θ(ω∗, τ∗, σmin) ≥ Θ(ω∗, τ∗, σmax)

b.√
ω∗ − 1

ω∗ + 1
= Θ(ω∗, τ∗, σmax) ≥ Θ(ω∗, τ∗, σmin)

c.

Θ(ω∗, τ∗, σmin) = Θ(ω∗, τ∗, σmax) ≥
√
ω∗ − 1

ω∗ + 1

where

α∗
− = ω∗√ω∗τ∗ −

√
ω∗τ∗(ω∗2 − 1),

α∗
+ = ω∗√ω∗τ∗ +

√
ω∗τ∗(ω∗2 − 1).

By straightforwardly solving the inequalities(1)-
(3), and(a)-(c), we can obtain ω∗τ∗ = σminσmax, we
can further obtain the optimal parameters

ω∗ =
σmax + σmin
2
√
σmaxσmin

(53)

τ∗ =
2σmaxσmin

√
σmaxσmin

σmax + σmin
(54)

The by substituting ω∗, τ∗into (52), we obtain

ρ(M(ω∗,τ∗)) =

√
σmax −

√
σmin√

σmax +
√
σmin

(55)

Corollary 10. [9]Consider the system of linear equa-
tions (10). Let A ∈ Rm×m be symmetric positive
definite matrix, B ∈ Rm×n be of full column rank,
and ω, τ, α, β > 0 four given constants. Assume
that Q ∈ Rm×m is a symmetric positive definite ma-
trix, If ω = α = τ = β, σk(k = 1, 2, . . . n) are
the positive singular values of the matrix B =

A− 1
2BQ− 1

2 , and σmin = min
1≤k≤n{σk}, σmax =

max
1≤k≤n{σk} Then for the PHSS iteration converges
to the exact solution of the system of linear equa-
tions (10), the optimal value of the iteration param-
eter α is given by

α∗ = argmin
α
ρ(M(α)) =

√
σminσmax,

and correspondingly

ρ(M(α∗)) =
σmax − σmin
σmax + σmin

(56)

4 Numerical examples
In this section, we use a numerical example to fur-

ther examine the effectiveness and show the advan-
tages of the 4-GPHSS method over the PHSS method
and GPHSS method.

This example is a system of purely algebraic
equations discussed in[12].The matrices A and B are
defined as follows:

A = (ai,j)m×m =


i+ 1, i = j,

1, |i− j| = 1,

0, otherwise.

B = (bi,j)m×n =

{
j, i = j +m− n,

0, otherwise.

We report the corresponding the number of it-
erations(denoted by IT), the spectral radius(denoted
by ρ), the time needed for convergence(denoted by
CPU)and the norm of absolute error vectors(denoted
by RES)by choosing Q = BTB for all the SOR-
like, 4-GPHSS, GPHSS and PHSS methods. The stop-
ping criterion are used in the computations,

||rk||2
||r0||2

< 10−6

where

rk =

(
p
−q

)
−
(

A B
−BT 0

)(
x(k)

y(k)

)
and {(x(k)T , y(k)T )T } is the kth iteration for each of
the methods.
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The optimum parameter for the SOR-like, PHSS
and GPHSS method were determined according to
had and given the results. We chose the parameters for
the 4-GPHSS method by trial and error. All the com-
putations were performed on an Intel E2180 2.0GHZ
CPU, 2.0G Memory, Windows XP system using Mat-
lab 7.0.

From the below numerical results, we can see that
the iteration number and the time in the 4-GPHSS
method and GPHSS method are less than that in the
SOR-like, PHSS method. From the IT and CPU two
rows, we know that we can decrease the number of
iterations and the time needed for convergence by
choosing four suitable parameters. However, we only
give the two optimum parameters, further theoretical
considerations regarding the determination of the four
optimum parameters for the 4-GPHSS method and nu-
merical computations are needed before any firm con-
clusions can be drawn. Further work in this direction
is underway.

Table 1: Iteration parameters for the PHSS method.

m 50 200 400
n 40 150 300

m+n 90 350 700
ωopt 0.2037 0.0993 0.0705
IT 99 210 306

CPU(s) 0.2507 21.5841 311.6206
ρ(M(ωopt)) 0.3653 0.3276 0.3320

RES 9.01E-7 9.47E-7 9.90E-7

Table 2: Iteration parameters for the GPHSS method.

m 50 200 400
n 40 150 300

m+n 90 350 700
ωopt 1.0742 1.0584 1.0601
τopt 0.0386 0.0093 0.0047
IT 10 9 9

CPU(s) 0.0492 1.1086 9.1771
ρ(M(ωopt,τopt)) 0.1892 0.1685 0.1708

RES 3.18E-7 7.52E-7 8.75E-7

Table 3: Iteration number for the SOR-like method.

m n m+n ωopt IT CPU(s)
50 40 90 1.8201 292 0.422
200 150 350 1.9533 1032 32.75
400 300 700 1.9759 2066 546.281
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Table 4: Iteration parameters for the 4GPHSSmethod.
m 50 200 400
n 40 150 300

m+n 90 350 700
ω 1.0742 1.0584 1.0601
τ 0.0386 0.0093 0.0047
α 1.08 1.064 1.064
β 0.0384 0.00925 0.00468
IT 9 9 9

CPU(s) 0.0263 1.1026 9.1113
ρ(M(ω,τ,α,β)) 0.1838 0.1483 0.1695

RES 9.63E-7 4.47E-7 5.07E-7

Table 5: Iteration parameters for the GPHSS method
without the optimum parameters.

m 50 200 400
n 40 150 300

m+n 90 350 700
ω 1.2 1.2 1.2
τ 0.2 0.2 0.05
IT 55 103 102

CPU(s) 0.144 13.843 110.092
RES 8.89E-7 9.35E-7 9.82E-7

Table 6: Iteration parameters for the 4GPHSS method
without the optimum parameters.

m 50 200 400
n 40 150 300

m+n 90 350 700
ω 1.2 1.2 1.2
τ 0.2 0.1 0.05
α 2.6 4.4 4
β 0.0923 0.0273 0.015
IT 26 35 37

CPU(s) 0.0812 4.376 40.355
RES 9.59E-7 5.68E-7 7.81E-7
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